硅酸锌车间底漆对船体钢在海水中氢脆行为的影响研究

安佰孝, 马晓, 吕雪松, 何其健, 郝福耀, 鲁统军, 侯健

装备环境工程 ›› 2024, Vol. 21 ›› Issue (6) : 102-110.

PDF(15926 KB)
PDF(15926 KB)
装备环境工程 ›› 2024, Vol. 21 ›› Issue (6) : 102-110. DOI: 10.7643/ issn.1672-9242.2024.06.014
船舶及海洋工程装备

硅酸锌车间底漆对船体钢在海水中氢脆行为的影响研究

  • 安佰孝1, 马晓2, 吕雪松3, 何其健3, 郝福耀2*, 鲁统军2, 侯健2
作者信息 +

Effect of Zinc Silicate Workshop Primer on the Hydrogen Embrittlement Behavior of Hull Steel in Seawater

  • AN Baixiao1, MA Xiao2, LYU Xuesong3, HE Qijian3, HAO Fuyao2*, LU Tongjun2, HOU Jian2
Author information +
文章历史 +

摘要

目的 研究硅酸锌车间底漆对船体钢在海水中氢脆行为的影响,为船舶建造涂装工艺提供数据支撑。方法 采用电化学测试、慢应变速率试验(SSRT)、断口微观形貌观察,考察带有硅酸锌车间底漆的船体钢在海水中的氢脆行为。结果 自腐蚀状态下,船体钢及其涂层试样的SSRT断口均以韧性断裂为主,氢脆系数均小于10%,没有明显的氢脆敏感性。-0.94 V阴极保护状态下,船体钢及其涂层试样的SSRT宏观断口均出现了不同程度的撕裂痕,微观断口出现小解理面特征。以硅酸锌涂层做底漆的试样,撕裂痕以及解理面特征最显著,氢脆系数增大最为明显。当船体钢/硅酸锌/环氧耐磨涂层表面出现破损时,氢脆敏感性系数进一步增大。结论 阴极保护状态下,硅酸锌底漆会增加船体钢在海水中的氢脆敏感性。

Abstract

The work aims to investigate the effect of zinc silicate workshop primer on the hydrogen embrittlement behavior of hull steel in seawater, providing data support for the coating process of shipbuilding. Electrochemical tests, slow strain rate test (SSRT), and microscopic observation of fracture morphology were carried out to examine the corrosion resistance and hydrogen embrittlement behavior of hull steel in seawater with and without zinc silicate workshop primer. Under self-corrosion conditions, the SSRT fractures of both hull steel and its coated samples were mainly ductile fractures, with hydrogen embrittlement coefficients less than 10%, indicating no significant hydrogen embrittlement sensitivity. Under cathodic protection potential of -0.94 V, the SSRT macroscopic fractures of both hull steel and its coated samples exhibited varying degrees of tear marks, and the microscopic fractures showed small cleavage plane features. Among them, the samples with zinc silicate coating as the primer exhibited the most significant tear marks and cleavage plane features, with the most obvious increase in hydrogen embrittlement coefficient. When the surface of the hull steel/zinc silicate/epoxy abrasion-resistant coating was damaged, the hydrogen embrittlement sensitivity coefficient further increased. Under cathodic protection conditions, the presence of zinc silicate primer can increase the hydrogen embrittlement sensitivity of hull steel in seawater.

关键词

船体钢 / 硅酸锌涂层 / 车间底漆 / 慢应变速率试验 / 阴极保护 / 氢脆

Key words

hull steel / zinc silicate coating / workshop primer / slow strain rate test / cathodic protection / hydrogen embrittlement

引用本文

导出引用
安佰孝, 马晓, 吕雪松, 何其健, 郝福耀, 鲁统军, 侯健. 硅酸锌车间底漆对船体钢在海水中氢脆行为的影响研究[J]. 装备环境工程. 2024, 21(6): 102-110 https://doi.org/10.7643/ issn.1672-9242.2024.06.014
AN Baixiao, MA Xiao, LYU Xuesong, HE Qijian, HAO Fuyao, LU Tongjun, HOU Jian. Effect of Zinc Silicate Workshop Primer on the Hydrogen Embrittlement Behavior of Hull Steel in Seawater[J]. Equipment Environmental Engineering. 2024, 21(6): 102-110 https://doi.org/10.7643/ issn.1672-9242.2024.06.014
中图分类号: TG174.4   

参考文献

[1] SUN M, XIAO K, DONG C F, et al.Stress Corrosion Cracking of Ultrahigh Strength Martensite Steel Cr9Ni5MoCo14 in 3.5% NaCl Solution[J]. Aerospace Science and Technology, 2014, 36: 125-131.
[2] HA H M, GADALA I M, ALFANTAZI A.Hydrogen Evolution and Absorption in an API X100 Line Pipe Steel Exposed to Near-Neutral pH Solutions[J]. Electrochimica Acta, 2016, 204: 18-30.
[3] 郝文魁, 刘智勇, 王显宗, 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势[J]. 装备环境工程, 2014, 11(1): 54-62.
HAO W K, LIU Z Y, WANG X Z, et al.Present Situation and Prospect of Studies on High Strength Steel and Corrosion Resistance in Naval Ship and Submarine[J]. Equipment Environmental Engineering, 2014, 11(1): 54-62.
[4] 郝文魁, 刘智勇, 王显宗, 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势[J]. 装备环境工程, 2014, 11(2): 50-58.
HAO W K, LIU Z Y, WANG X Z, et al.Current Situation and Prospect of Studies on Strength and Corrosion Resistance of High Strength Steel for Ocean Platform[J]. Equipment Environmental Engineering, 2014, 11(2): 50-58.
[5] 邢少华, 李焰, 马力, 等. 深海工程装备阴极保护技术进展[J]. 装备环境工程, 2015, 12(2): 49-53.
XING S H, LI Y, MA L, et al.Research Progress in Cathodic Protection Technology for Marine Infrastructures in Deep Sea Environment[J]. Equipment Environmental Engineering, 2015, 12(2): 49-53.
[6] BASTOS A C, SIMÕES A M, GONZÁLEZ S, et al. Application of the Scanning Electrochemical Microscope to the Examination of Organic Coatings on Metallic Substrates[J]. Progress in Organic Coatings, 2005, 53(3): 177-182.
[7] PARKINS R N.The Theory of Stress Corrosion Cracking in Alloys[J]. British Corrosion Journal, 1972, 7(4): 151.
[8] 许立坤, 马力, 邢少华, 等. 海洋工程阴极保护技术发展评述[J]. 中国材料进展, 2014, 33(2): 106-113.
XU L K, MA L, XING S H, et al.Review on Cathodic Protection for Marine Structures[J]. Materials China, 2014, 33(2): 106-113.
[9] BILLINGHAN J, SHARP J V.Review of the Performance of High Strength Steels Used Offshore[R]. Cranfield: Cranfield University, 2003.
[10] WANKLY J N.In Cathodic Protection Theory and Practice[M]. Chichester: Ellis Horwood, 1986: 66-77.
[11] 邱开元, 魏宝明, 方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性[J]. 南京工业大学学报(自然科学版), 1992, 14(2): 8-14.
QIU K Y, WEI B M, FANG Y H.The Cathodic Protection and Susceptibility of Hydrogen Embrittlement of 16Mn Steel in 3% NaCl Solution[J]. Journal of Nanjing University of Technology (Natural Science Edition), 1992, 14(2): 8-14.
[12] 谭文志, 杜元龙, 傅超, 等. 阴极保护导致ZC—120钢在海水中环境氢脆[J]. 材料保护, 1988, 21(3): 10-13.
TAN W Z, DU Y L, FU C, et al.Cathodic Protection Leads to Environmental Hydrogen Embrittlement of ZC-120 Steel in Seawater[J]. Materials Protection, 1988, 21(3): 10-13.
[13] 陈祥曦, 马力, 赵程, 等. 阴极保护电位对E460钢氢脆敏感性的影响[J]. 腐蚀与防护, 2015, 36(11): 1026-1029.
CHEN X X, MA L, ZHAO C, et al.Effect of Cathodic Protection Potentials on Susceptibility to Hydrogen Embrittlement of E460 Steel[J]. Corrosion & Protection, 2015, 36(11): 1026-1029.
[14] 高心心, 郭建章, 潘大伟, 等. 模拟深海环境下高强钢焊缝阴极保护研究[J]. 装备环境工程, 2016, 13(4): 124-130.
GAO X X, GUO J Z, PAN D W, et al.Cathodic Protection Research of High-Strength Steel Welding Line in Simulated Deep-Sea Environment[J]. Equipment Environmental Engineering, 2016, 13(4): 124-130.
[15] 潘大伟, 高心心, 马力, 等. 模拟深海环境中高强钢的阴极保护准则[J]. 腐蚀与防护, 2016, 37(3): 225-229.
PAN D W, GAO X X, MA L, et al.Cathodic Protection Criteria of High Strength Steel in Simulated Deep-Sea Environment[J]. Corrosion & Protection, 2016, 37(3): 225-229.
[16] 李相波, 马广义, 陈祥曦, 等. 船用E500钢在海水中阴极极化氢脆敏感性研究[J]. 装备环境工程, 2017, 14(2): 6-10.
LI X B, MA G Y, CHEN X X, et al.Susceptibility to Hydrogen Embrittlement of E500 Steel for Vessel in Seawater[J]. Equipment Environmental Engineering, 2017, 14(2): 6-10.
[17] 刘玉, 李焰, 李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
LIU Y, LI Y, LI Q.Effect of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel in Simulated Deep Sea Environment[J]. Acta Metallurgica Sinica, 2013, 49(9): 1089-1097.
[18] 常娥, 闫永贵, 李庆芬, 等. 阴极极化对921A钢海水中氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 83-88.
CHANG E, YAN Y G, LI Q F, et al.Effects of Cathodic Polarization on the Hydrogen Embrittlement Sensitivity of 921A Steel in Sea Water[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1): 83-88.
[19] 林召强, 马力, 闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
LIN Z Q, MA L, YAN Y G.Effects of Cathodic Polarization on the Hydrogen Embrittlement Sensitivity of Welding Line in High Strength Hull Structural Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2011, 31(1): 46-50.
[20] 陈贻明, 范培华, 秦国伟. 15年涂层防护的新造船涂装施工工艺(续一)[J]. 中国涂料, 2006, 21(3): 44-45.
CHEN Y M, FAN P H, QIN G W.New Shipbuilding Painting Construction Technology with Coating Protection for 15 Years (Continued)[J]. China Coatings, 2006, 21(3): 44-45.
[21] 汪国平. 船舶涂料与涂装技术[M]. 第二版. 北京: 化学工业出版社, 2006.
WANG G P.Ship Coatings and Painting Technology[M]. 2nd Edition. Beijing: Chemical Industry Press, 2006.
[22] 杨文平. 高强度钢在海水环境中合理阴极保护电位研究[J]. 材料开发与应用, 2020, 35(4): 24-31.
YANG W P.Study on Cathodic Protection Potential of High Strength Steel in Seawater[J]. Development and Application of Materials, 2020, 35(4): 24-31.
[23] 尹鹏飞, 李向阳, 陆文萍, 等. 阴极极化对10Ni9CrMoV高强钢氢脆敏感性的影响[J]. 钢铁研究学报, 2020, 32(5): 416-422.
YIN P F, LI X Y, LU W P, et al.Effect of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10Ni9CrMoV High Strength Steel[J]. Journal of Iron and Steel Research, 2020, 32(5): 416-422.
[24] 张体明, 赵卫民, 郭望, 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
ZHANG T M, ZHAO W M, GUO W, et al.Susceptibility to Hydrogen Embrittlement of X65 Steel under Cathodic Protection in Artificial Sea Water[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 315-320.
[25] 刘杰, 李相波, 王佳, 等. 阴极极化对人为破损907A涂层钢腐蚀行为的影响[J]. 装备环境工程, 2010, 7(3): 1-5.
LIU J, LI X B, WANG J, et al.Effect of Cathodic Polarization on Corrosion Behavior of 907A Steel with Coating of Artificial Defect[J]. Equipment Environmental Engineering, 2010, 7(3): 1-5.
[26] ONI A.Effects of Cathodic Overprotection on some Mechanical Properties of a Dual-Phase Low-Alloy Steel in Sea Water[J]. Construction and Building Materials, 1996, 10(6): 481-484.
[27] KIM S J, JANG S K, KIM J I.Electrochemical Study of Hydrogen Embrittlement and Optimum Cathodic Protection Potential of Welded High Strength Steel[J]. Metals and Materials International, 2005, 11(1): 63-69.
[28] KIM S J, JANG S K, KIM J I. Effects of Post-Weld Heat Treatment on Optimum Cathodic Protection Potential of High-Strength Steel in Marine Environment Conditions[J]. Materials Science Forum, 2005, 486/487: 133-136.
[29] BATT C, DODSON J, ROBINSON M J.Hydrogen Embrittlement of Cathodically Protected High Strength Steel in Sea Water and Seabed Sediment[J]. British Corrosion Journal, 2002, 37(3): 194-198.

PDF(15926 KB)

Accesses

Citation

Detail

段落导航
相关文章

/